
Hypervisor security

Evgeny Yakovlev, DEFCON NN, 2017



whoami
● Low-level development in C and C++ on x86
● UEFI, virtualization, security
● Jetico, Kaspersky Lab
● QEMU/KVM developer at Virtuozzo

2



Agenda
● Why hypervisor security
● How hypervisors work
● Threat model & attack surface
● Virtualization bugs
● Questions

3



Why hypervisor security
Virtualization is relied upon in many areas:

● Server and cloud
● Embedded and automotive
● Desktop security
● R&D

4



5



6



7



CVE statistics summary

8

● KVM has smallest code base
● Qemu is a device emulator - huge code base
● Both KVM and Xen rely on Qemu for device emulation



CVE statistics summary

9

● Microsoft HyperV has 0 reported CVEs
● VmWare ESXi has no reported VM escapes in 2016



CVE statistics summary

10



Computer system as an API

11

● CPUs (x86 ISA)
● Memory 

(segmentation, 
paging)

● I/O (MMIO, PIO)
● Networking 

protocols



Emulation and Virtualization

12

Emulation

Imitation of a different 
system, usually software

Virtualization

Partitioning same system 
into multiple virtual 
instances

Both are implementation of a computer system API



Virtual memory, for example

An early example 
of resource 
virtualization — 
memory address 
space

13



Virtual systems

14

● Consolidation
● Flexibility
● Isolation



Hypervisor privileged role

15

● Drives virtualization hardware
● Executes in privileged CPU mode
● Manages VMs and platform resources.
● Emulates hardware requests
● Provide services to enlightened OS



Hypervisor privileged role

16



Hypervisor privileged role

17



Type-1 hypervisor

18

● Hypervisor runs on bare-metal
● Can be a very small code base..
● .. but has to solve driver problem
● All OS kernels run in isolated 

environment and don’t touch 
hardware

● Xen, Hyperv, VMWare ESX



Type-2 hypervisor

19

● Hypervisor is an OS component
● Host OS provides all drivers
● Huge trusted computing base.

● KVM, VirtualBox, VMWare 
workstation



Threat model

20

● Hypervisor is a privileged code base
● Hardware and firmware are usually trusted
● VMs should never be trusted by hypervisor
● VM may not trust hypervisor or other VMs



Type-1 vs Type-2 trust boundary

21



Type-1 root domain trust

22

● Type-1 often runs a special guest, a 
root domain

● More trusted than normal guest
● Runs OS kernel to drive host hardware
● Runs device (para-)virtualization stack
● Xen Dom0



Security threats

23

● Denial of service
● Privilege escalation (VM-local or VM-host)
● Information leak



Attack surface

24

● Hypercalls
● MMIO and device emulation
● Paravirtualization
● Side-channels



Hypercalls

25

Hypercalls are services for 
hypervisor-aware guest:

● Virtual hardware and events
● Memory management
● Cross-VM communication
● Crash handling
● Security



Hypercalls

26

● Relatively small surface, can be fuzz-tested
● Usually available only in guest ring 0
● Not a lot of issues, especially in HWVMs
● Be wary of double-fetch bugs



Double-fetch bugs

27http://tkeetch.co.uk/blog/?p=58



Device emulation

28

● Huge code base with bad track record
● Obscure CPU features and registers
● Complicated hardware with dodgy corner cases
● MMIO instruction decoding



Device emulation: vmexit

29



Device emulation: MMIO

30



Device emulation

31

● KVM MMIO emulation - 5k LoC, 50% KVM CVEs
● Most of Xen CVEs
● Most of qemu CVEs
● Google even decided to roll its own emulator



Device emulation: Dark Portal

32

VGA VM escape: 
http://www.powerofcommunity.net/poc2016/wei.pdf

● Attacker controls VGA bank offset register
● Bank offset used as unbounded offset into array
● Attacker can read or write 32bit value anywhere

http://www.powerofcommunity.net/poc2016/wei.pdf
http://www.powerofcommunity.net/poc2016/wei.pdf


Paravirtualization

33

● Vmexit is a huge performance hit
● Hardware emulation using vmexits is slow
● Shared memory is fast
● Let’s build virtual hardware protocol on shared memory!
● Virtio, VMBus, Xen



Paravirtualization

34

● Virtio-disk talks to guest driver 
through shared memory

● More performance
● But guest OS needs a specific 

driver
● Also some interesting security 

challenges 



Paravirtualization

35

● Shared memory simplified device interface and 
implementation

● Ring buffers on shared memory vulnerable to 
double-fetch bugs

● Xenpwn: https://youtu.be/XOb--niy_0M



Side-channels

36

● Not an attack on hypervisor itself
● Co-located VM information leaks
● Hardware optimizations (CPU caches, DRAM timings)
● Memory deduplication



Memory deduplication

37



Memory deduplication

38

● Turns out deduplicated memory has measurable access 
time delays

● Attacker VM can “guess” co-located memory contents
● “CAIN: Silently Breaking ASLR in the Cloud” 

https://www.usenix.org/node/191961



Caches and DRAM timings

39

● CPU cache optimizes memory access
● “Evict and measure” attacks

○ Attacker VM evicts cache line 
○ Victim VM fetches it back
○ Attacker VM measures evicted line access timing

● DRAM has an internal cache line too!



Caches and DRAM timings

40



Conclusion

41

● Hypervisors are getting more attention lately
● Device emulation is historically most vulnerable
● Paravirtualization is probably next big thing
● Co-localed leaks are very promising
● A lot of undiscovered problems in closed-source 

products



Thanks! Questions?
insoreiges at gmail dot com
https://github.com/warfish
https://www.facebook.com/evgeny.yakovlev.5268

42

https://github.com/warfish
https://github.com/warfish
https://www.facebook.com/evgeny.yakovlev.5268
https://www.facebook.com/evgeny.yakovlev.5268


Motivations
● I’m a developer and i build stuff
● I want my stuff to be secure
● Researchers make stuff more secure
● Let’s share knowledge

43



44



Device emulation: XSA-190

45

http://xenbits.xen.org/xsa/advisory-190.html

“Xen 4.7.x and earlier does not properly honor CR0.TS and 
CR0.EM, which allows local x86 HVM guest OS users to 
read or modify FPU, MMX, or XMM register state 
information belonging to arbitrary tasks on the guest by 
modifying an instruction while the hypervisor is preparing to 
emulate it.”

http://xenbits.xen.org/xsa/advisory-190.html
http://xenbits.xen.org/xsa/advisory-190.html


Conclusion

46

● Moving code to user space (KVM split-IRQ chip)
● Fuzzing entry points and devices
● Live patching


